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Abstract

In this study, a quantitative structure–property relationship technique has been used for the simultaneous prediction of
Kovats retention indices for some esters, alcohols, aldehyde and ketones on OV-1 and SE-54 stationary phases, using an
artificial neural network (ANN). The best-selected descriptors that appear in the models are the molecular values, number of
atoms in each molecule, molecular shadow area on the xy plane and the energy level of the highest occupied molecular
orbital. A 4-6-2 ANN was generated using these descriptors as inputs and its outputs will be the Kovats retention indices on
OV-1 and SE-54 stationary phases. After optimization of the network parameters, the network was trained using a training
set. For the evaluation of the predictive power of the generated ANN, an optimized network was used to predict the Kovats
retention indices of the prediction set. The results obtained in this study showed that the average percentage deviation
between the predicted ANN and the experimental values of Kovats retention indices for the prediction set were 2.5 and 3.0%
on the OV-1 and SE-54 stationary phases, respectively. These values are in good agreement with the experimental results.
 2002 Published by Elsevier Science B.V.

Keywords: Retention indices; Regression analysis; Mathematical modelling; Neural networks, artificial; Molecular
descriptors; Quantitative structure–property relationships; Alcohols; Esters; Carbonyl compounds

1. Introduction retention indices seems to be necessary. Retention is
a phenomenon that primarily depends on the interac-

The Kovats retention indices in gas chromatog- tions between the solute molecules and the stationary
raphy (GC) represent the retention behavior of a phase. The forces associated with these interactions
compound relative to a standard set of hydrocarbons, can be related to the geometric and topological
using a logarithmic scale [1]. The identification of structure and also to the electronic environments of a
many compounds is often accomplished on the basis molecule. Quantitative structure–property relation-
of GC peak comparison with a standard sample of ships (QSPRs) have been demonstrated to be a
the suspected material. However, it is not always powerful tool in chromatographic studies [2]. QSPRs
possible to obtain samples of pure standard com- have been used to obtain simple models to explain
pound for such comparison, therefore the develop- and predict the chromatographic behavior of various
ment of a theoretical model for estimating the classes of compounds. Mekenyan et al. derived linear

quantitative retention–structure models in gas chro-
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two geometric indices and two electronic structure groups; a training set and a prediction set consisting
parameters as descriptors [3]. Woloszyn and Jurs of 87 and 20 molecules, respectively. The training
correlated the observed Kovats retention indices of set was used for the model generation and the
sulfur vesicants by multiple linear regression (MLR) prediction set was used for the evaluation of the
techniques using nine topological, electronic and generated model.
geometrical descriptors [4]. They also predicted the
GC retention behavior of 67 hydrocarbons [5]. 2.2. Descriptors generation
Collantes et al. studied the chromatographic retention
data of 31 unsubstituted 3-6 ring polycyclic aromatic Retention in gas chromatography is the result of
hydrocarbons using CoMFA [6]. Katritzky et al. also competitive solubility of the solute between the
reported the QSPR modeling of the GC retention mobile and stationary phases. The molecular struc-
indices of methyl-branched hydrocarbons produced ture and chemical properties of the solute determine
by insects [7]. Some other reports in this area are the type and extent of the interactions of the solute
listed in Refs. [8–11]. with these phases. The differences between these

Artificial neural networks (ANNs) have been used properties govern the retention behavior through the
for a wide variety of chemical problems such as column. Due to the diversity of the molecules

13prediction of C NMR chemical shift [12] and studied in this work, 64 different descriptors were
selectivity coefficients of ion-selective electrodes calculated. These parameters encoded different as-
[13], simulation of mass spectra [14] and modeling pects of the molecular structure and consist of
of ion-interaction chromatography [15,16]. ANNs electronic, geometric and topological descriptors.
were also used in quantitative structure–activity Geometric descriptors were calculated using opti-
relationship studies [17–21]. mized Cartesian coordinates and the van der Waals

In this report, an ANN was employed to generate radius of each atom in the molecule [23,24]. Elec-
a QSPR model between the molecular-based struc- tronic descriptors were calculated using the MOPAC
tural parameters and observed retention indices of program (version 6) [25]. Topological descriptors
some oxygenated organic compounds on OV-1 and were calculated using two-dimensional representa-
SE-54 stationary phases simultaneously. tion of the molecules. Some of the descriptors

generated for each compound encoded similar in-
formation about the molecule of interest. Therefore,

2. Experimental it was desirable to test each descriptor and eliminate
those that show high correlation (R.0.95) with each

2.1. Data set other. A total of 23 out of 64 descriptors showed
high correlation and were removed from the next

The data set of Kovats retention indices was taken consideration. Subsequently, the method of stepwise
from the values reported by Zhang et al. [22]. The multiple linear regression was used for selection of
molecules in the data set including esters, ketones, important descriptors. The descriptors that appear in
aldehydes and alcohols, are shown in Table 1. The the best MLR equations for OV-1 and SE-54 station-
Kovats retention indices of all molecules included in ary phases are identical and are shown in Table 2.
the data set were obtained under the same conditions These descriptors were used as inputs for the gener-
on two stationary phases; OV-1 (dimethylpolysilox- ated ANN.
ane) and SE-54 (5% phenyl–95% dimethylpolysilox-
ane). The Kovats retention indices fall in the range of 2.3. Artificial neural network generation
605.79–986.60 for propyl formate and 3,6-dimethyl-
3-heptanone on OV-1 stationary phase, respectively, A detailed description of the theory behind a
and in the range of 623.60 for propyl formate to neural network has been adequately described else-
1000 for 3,6-dimethyl-3-heptanone and ethyl hexa- where [26–28]. In addition we reported some rel-
nate on SE-54 stationary phase. evant principles of the ANNs in previous papers

The data set was randomly divided into two [12,19–21]. The program for the feed-forward neural
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Table 1
Data set and corresponding observed (obs) and ANN predicted (cal) values of the retention indices (I)

No. (I ) (I ) (I ) (I )ov-1 obs ov-1 cal SE-54 obs SE-54 cal

Training set
1 3,3-Dimethyl-1-butanol 778.77 750.73 763.63 761.69
2 3-Methyl-3-hexanol 826.62 806.45 841.11 821.67
3 2,2,4-Trimethyl-3-pentanol 881.49 909.19 894.00 926.65
4 4-Methyl-1-pentanol 821.19 825.56 836.97 845.20
5 2-Pentanone 666.34 667.14 687.79 685.86
6 Isopropyl acetate 640.54 644.68 661.78 662.13
7 Propyl formate 605.79 623.61 623.60 634.78
8 Isobutyl formate 673.40 683.85 689.84 701.58
9 4-Ethyl-3-hexanol 953.26 960.86 967.63 970.93

10 Butyl formate 707.64 698.36 725.53 718.35
11 2,4-Dimethyl-2-pentanol 775.91 810.96 789.03 826.48
12 2-Hexanone 761.93 863.63 790.03 882.85
13 1-Heptanol 955.05 911.87 971.73 926.58
14 2-Methyl-3-Pentanol 757.96 783.44 772.28 797.27
15 Isobutyl propionate 852.83 888.02 869.02 905.18
16 2-Ethyl hexanal 934.65 868.92 954.71 888.53
17 2,2,4,4-Tetramethyl-3-pentanone 900.00 911.12 914.09 928.84
18 3-Methyl-3-butene-1-ol 713.62 712.77 731.70 739.13
19 3,3-Dimethyl-2-butanone 693.05 718.32 711.58 731.17
20 Butyl butyrate 979.36 981.77 997.07 987.35
21 2-Methyl-3-hexanone 819.95 825.91 838.42 844.22
22 2,2-Dimethyl-1-propanol 657.34 642.70 670.46 652.47
23 2-Methyl-2-heptanol 916.43 938.26 930.38 952.08
24 Methyl propionate 615.21 623.11 630.43 633.96
25 2-Amino-1-butanol 804.30 779.83 830.50 799.17
26 Methyl isobutyrate 670.97 658.76 686.58 671.75
27 3,6-Dimethyl-3-heptanol 986.60 959.14 1000.00 969.73
28 3-Methyl-2-butanone 640.90 641.72 661.44 654.14
29 3-Methyl-1-butanol 719.03 734.20 734.39 753.32
30 2,2-Dimethyl-3-pentanol 805.63 829.81 818.97 846.42
31 2-Ethylbutyl acetate 956.99 960.48 974.66 970.47
32 Isobutyl isobutyrate 900.00 898.15 915.56 915.79
33 Methyl hexanoate 907.01 893.52 925.46 911.06
34 2-Methyl-4-pentene-2-ol 694.62 722.19 710.28 735.91
35 6-Methyl-2-heptanol 951.10 968.57 965.00 977.02
36 3-Heptanone 865.79 864.66 886.89 884.16
37 2-Methyl pentanal 742.38 757.47 762.95 778.87
38 3-Pentanone 676.41 675.80 700.00 695.74
39 Butyl isobutyrate 938.55 965.79 954.26 974.81
40 Ethyl hexanate 982.90 967.49 1000.00 976.24
41 2-Methyl-2-pentanol 717.57 768.21 731.39 780.57
42 Pentyl acetate 896.36 891.12 914.88 908.30
43 2-Ethyl-1-butanol 825.94 781.74 841.00 795.55
44 Propyl butyrate 881.53 890.74 898.88 907.96
45 2-Octanone 968.77 956.29 991.27 967.11
46 2-Propanol 700.00 701.67 725.82 725.48
47 2,4-Dimethyl-3-pentanone 779.01 774.04 795.28 787.94
48 4-Methyl-1-pentene 3-ol 740.10 739.78 754.41 758.00
49 Ethyl isovalerate 838.35 855.63 854.28 873.55
50 Butyl acetate 796.18 808.25 814.16 830.20
51 Methyl butyrate 705.61 707.93 722.96 729.25
52 3-Butene-1-ol 618.91 669.16 636.98 697.29
53 2-Methyl butanal 636.32 645.06 657.70 658.18
54 5-Methyl-3-heptanol 943.58 940.62 957.88 954.12
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Table 1. Continued

No. (I ) (I ) (I ) (I )ov-1 obs ov-1 cal SE-54 obs SE-54 cal

55 2-Pentanol 682.66 675.90 700.00 695.87
56 4-Heptanol 875.42 864.68 890.00 884.16
57 2-Amino-2-methyl-1-propanol 730.84 745.68 754.91 763.77
58 2-Butene-1-ol 649.00 666.17 666.00 697.23
59 3-Methyl-2-butanol 666.02 668.77 680.26 681.32
60 2,3-Dimethyl-4-pentene-2-ol 781.91 774.41 797.12 787.59
61 3-Methyl-2-pentanone 734.76 745.40 754.92 764.01
62 4-Heptanone 853.35 864.68 873.44 884.16
63 2-Methyl-2-hexanol 817.33 843.95 831.38 860.48
64 2-Methyl-2-butanol 626.20 660.73 640.33 672.48
65 Ethyl butyrate 784.04 810.90 800.00 832.58
66 2-Ethyl-4-methyl-1-pentanol 972.00 920.30 986.00 936.48
67 3-Hexanone 764.84 760.51 785.88 782.70
68 2,2,4-Trimethyl-1-pentanol 930.00 928.32 943.00 943.49
69 Isobutyl acetate 757.65 763.23 774.13 789.12
70 1-Hexanol 852.96 833.12 869.44 850.01
71 3-Ethyl-3-pentanol 843.09 841.96 858.19 858.95
72 2,2-Dimethyl-1-heptanol 867.57 936.30 881.00 950.81
73 1-Heptene-4-ol 850.88 869.22 867.52 889.40
74 4-Methyl-2-pentanol 744.14 746.33 758.42 765.08
75 Methyl isovalerate 761.30 745.53 777.34 758.71
76 5-Methyl-3-hexanol 838.15 815.86 852.08 832.07
77 3-Amino-1-propanol 775.50 805.15 807.76 827.64
78 2,2-Dimethyl-3-heptanone 964.66 924.43 980.56 940.63
79 2,3-Dimethyl-3-pentanol 823.66 810.58 838.69 826.17
80 4-Heptene-1-ol 735.81 668.51 754.51 696.40
81 Isobutyl alcohol 611.31 621.81 626.00 638.88
82 2-Methyl-1-pentanol 818.35 821.81 833.58 838.02
83 2,4-Dimethyl-3-heptanol 821.18 818.54 834.49 834.73
84 1-Butanol 646.48 628.91 662.08 640.80
85 5-Methyl-2-hexanone 836.53 862.32 858.37 881.47
86 5-Methyl-3-hexanone 816.74 813.38 835.88 830.86
87 2-Heptanol 885.57 904.59 900.00 919.86

Prediction set
1 Propyl acetate 696.34 688.89 713.63 704.44
2 Ethyl propionate 694.19 701.50 711.16 720.20
3 Butyl propionate 891.40 887.80 909.12 904.20
4 4-Methyl-2-pentanone 721.24 743.43 741.61 758.95
5 2-Heptanone 868.70 858.26 891.01 876.13
6 3-Pentanol 684.21 698.77 700.00 713.40
7 3-Methyl-1-pentanol 828.82 777.77 845.00 790.51
8 4-Octanol 975.50 955.34 990.22 998.13
9 2-Methyl-2-propen-1-ol 629.11 608.20 646.35 672.16

10 2-Methyl-1-pentene-3-ol 763.67 774.13 778.54 797.54
11 2-Amino ethanol 644.27 651.05 670.38 670.08
12 Propyl propionate 792.58 765.15 809.79 782.02
13 1-Pentanol 750.40 718.38 766.59 735.49
14 Isobutyl butyrate 940.26 962.03 956.57 971.66
15 2-Methyl-3-pentanone 733.02 735.18 752.40 749.50
16 2,6-Dimethyl-4-heptanone 954.66 932.61 970.95 947.69
17 2,3-Dimethyl-2-butanol 715.26 667.94 729.44 684.78
18 3-Hexanol 780.36 798.56 795.07 812.80
19 3,5-Dimethyl-3-hexanol 883.13 850.25 896.48 932.84
20 3-Octanol 981.97 998.12 997.47 968.51
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Table 2
Specification of multiple linear regression models

Descriptor Notation Coefficient of OV-1 Coefficient of SE-54

1. Number of atoms in molecule NA 25.202 (62.237) 25.154 (62.269)
2. Molecular volume MV 9.548 (61.315) 10.150 (61.334)
3. Molecular shadow area on xy plane S 22.695 (60.536) 22.876 (60.544)xy

4. Highest occupied molecular orbital HOMO 41.323 (611.243) 45.498 (611.406)
Constant 659.740 (6114.520) 720.472 (6116.183)

network that was trained by back-propagation algo- are alcohols, esters, aldehydes and ketones. All of
rithm was written in FORTRAN 77. This network these types of molecules are included in the predic-
has four nodes in the input layer and the numbers of tion set. Therefore, although the molecules included
nodes in the output layer were set to be two. The in the prediction set are chosen randomly, they
signals of each node in the output layer represent the adequately represent the training set. Table 2 shows
Kovats retention indices on OV-1 and SE-54 station- the best MLR models. It can be seen from this table
ary phase separately. The number of nodes in the that four identical descriptors are used in the two
hidden layer would be optimized. The initial weights MLR models. These variables encode different as-
were randomly selected from a uniform distribution pects of the molecular structure. Among the different
that ranged between 20.3 and 10.3. The initial bias factors affecting the retention behavior of molecules,
values were set to be one. These values were mass, size and bulkiness are most important. The
optimized during the network training. The value of number of atoms in each molecule, the molecular
each input was divided into its mean value to bring volume and the molecular shadow area on the xy
the values of the input variables into the dynamic plane represent these properties that can appear in
range of the sigmoid transfer function in the ANN. models. The appearance of the energy level of the
Before training, the network was optimized for the highest occupied molecular orbital in the models
number of nodes in the hidden layer, learning rates represents the role of electronic interaction between a
and momentum. Then the network was trained using solute molecule and stationary phase. The calculated
the training set by back-propagation strategy to values of these descriptors appearing in the best
optimize the values of the weights and biases. It is models are shown in Table 3 for whole molecules
known that neural networks can become over- included in the training and prediction sets.
trained. An over-trained network has usually learned The next step was the generation of the artificial
perfectly the stimulus pattern it has seen (training neural network. Before training the network, the
set) but cannot give accurate predictions for unseen parameters of the number of nodes in the hidden
stimuli, and it is no longer able to generalize. There layer, weights and biases learning rates and momen-
are several methods for overcoming this problem. tum values were optimized. The procedure for the
One of the superior methods is to use a test set to optimization of these parameters was reported in our
validate the prediction power of the network during previous papers [14,21]. Table 4 shows the architec-
its training [21]. In order to evaluate the performance ture and specifications of the optimized ANN. After
of the ANN, standard error of calibration (SEC) and the optimization of the ANN’s parameters the net-
standard error of prediction (SEP) were used [29]. work was trained using a training set for the adjust-

ment of weights and bias values. To control the
overfitting of the network during the training pro-

3. Results and discussion cedure, the values of SEC and SEP were calculated
and recorded to monitor the extent of the learning

The data set and corresponding observed and after 500 iterations. Results obtained showed that
ANN predicted values of the Kovats retention in- after 47 000 iterations, the value of SEP started to
dices of all molecules studied in this work are shown increase and overfitting began. To maintain the
in Table 1. The molecules included in the data set predictive power of the network at a desirable level,
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Table 3
The values of the descriptors that were used in this work

aNo. NA MV S HOMO Table 3. Continuedxy

aTraining set No. NA MV S HOMOxy

1 21 120.57 33.85 210.76
60 22 131.43 32.49 210.092 24 137.42 33.84 210.76
61 19 114.90 38.21 210.423 27 153.29 42.64 210.58
62 22 131.92 44.92 210.404 21 121.02 40.55 210.85

5 16 98.26 34.74 210.53 63 24 137.57 41.80 210.82
6 17 123.18 12.87 211.20 64 18 103.91 31.59 210.81
7 14 90.16 33.36 211.22 65 20 123.59 43.36 211.21
8 17 105.92 36.23 210.58 66 27 154.19 44.96 210.75
9 27 153.73 48.70 210.63 67 19 115.10 39.78 210.41

10 17 107.05 37.84 211.17
68 27 153.67 45.73 210.7811 24 137.22 37.32 210.76
69 20 131.89 46.49 211.3812 22 131.99 44.97 210.51
70 21 121.06 40.81 210.8413 24 137.90 45.96 210.85
71 24 136.75 40.54 210.5714 21 120.80 37.92 210.76

15 23 140.28 48.03 211.15 72 30 170.96 49.21 210.81
16 22 132.03 45.45 210.43 73 22 132.04 45.17 210.19
17 28 164.02 41.23 210.10 74 19 115.11 38.38 210.48
18 16 139.37 45.69 29.78 75 20 123.59 38.17 211.09
19 19 114.71 34.51 210.35 76 21 120.54 39.68 210.68
20 29 174.21 58.79 211.15

77 17 97.89 34.97 29.6721 22 131.84 42.28 210.31
78 28 165.23 46.43 210.2322 18 103.93 30.33 210.87
79 24 136.88 35.13 210.6823 27 154.44 46.87 210.80
80 13 81.56 31.91 210.0224 14 89.79 33.01 211.23

25 17 97.94 32.64 29.75 81 15 87.23 29.62 210.86
26 17 106.72 35.17 211.15 82 21 120.84 40.13 210.87
27 30 170.97 51.68 210.74 83 24 137.20 37.63 210.62
28 16 98.21 31.66 210.43 84 15 87.33 30.62 210.84
29 18 104.12 35.72 210.81 85 22 131.92 44.82 210.51
30 24 136.91 39.61 210.62

86 22 131.96 41.69 210.3731 26 156.94 51.83 211.03
87 24 137.79 45.26 210.7932 26 157.16 46.13 211.07

33 23 140.35 48.44 210.95
Prediction set34 19 114.97 35.16 210.11

35 27 154.51 50.50 210.87 1 17 106.83 38.35 211.19
36 22 131.96 44.94 210.40 2 17 106.62 38.16 211.18
37 19 115.17 39.48 210.44 3 23 140.48 48.52 211.15
38 16 98.20 34.64 210.42 4 19 115.11 38.05 210.49
39 26 157.32 53.52 211.07 5 22 131.99 44.97 210.51
40 26 157.26 53.55 210.95

6 18 104.10 34.45 210.8641 21 120.74 36.66 210.84
7 21 120.84 38.17 210.7942 23 140.47 48.54 211.17
8 27 154.70 49.74 210.7943 21 120.63 37.71 210.67
9 13 81.17 31.57 29.6444 23 140.52 48.50 211.16

45 25 148.82 50.07 210.51 10 19 114.69 40.81 29.69
46 12 70.51 24.68 210.91 11 11 64.18 24.78 29.84
47 22 131.56 37.24 210.22 12 20 119.91 42.14 211.16
48 19 114.94 37.86 210.23 13 18 101.31 34.98 210.85
49 23 140.21 45.21 210.81 14 26 157.29 53.38 211.19
50 20 123.74 43.39 211.17

15 19 115.01 37.06 210.3251 17 106.62 38.17 211.24
16 28 165.52 49.04 210.3252 13 81.48 31.94 210.02
17 21 120.37 36.14 210.7153 16 98.40 32.05 210.42
18 21 120.95 39.71 210.8254 27 154.05 46.85 210.72

55 16 98.21 34.65 210.42 19 27 153.79 44.88 210.66
56 22 131.92 44.92 210.40 20 27 154.73 50.05 210.80
57 17 97.90 30.50 29.78

The definitions of the descriptors are given in Table 2.58 13 81.51 31.95 29.61
a The numbers refer to the numbers of the molecules given in59 18 104.07 32.26 210.84

Table 1.
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Table 4
Architecture and specification of the generated ANN

No. of nodes in the input layer 4
No. of nodes in the hidden layer 6
No. of nodes in the output layer 2
Weights learning rate 0.16
Biases learning rate 0.5
Momentum 0.5
Transfer function Sigmoid

training was stopped at this point. Based upon the
high values of iterations, two points may arise. First,
the architecture of the generated ANN was correctly
designed and second the descriptors appearing in the
MLR models have been chosen adequately.

For the evaluation of the predictive power of the
network, a trained ANN was used to predict the

Fig. 1. Plot of the calculated retention indices against the ex-Kovats retention indices of the molecules included in
perimental values.the prediction set. Table 1 represents the experimen-

tal and ANN predicted values of retention indices on
OV-1 and SE-30 stationary phases for the training respectively [30]. However, it is worth noting that
and prediction set compounds. The statistical param- these values are in agreement with the results
eters obtained by ANN and MLR models for the obtained by experiments.
training and prediction set compounds are shown in Fig. 1 shows the plot of the ANN predicted versus
Table 5. It can be seen from this table that although the experimental values for the retention indices of
the parameters appearing in the MLR models are the prediction set. The residuals of the ANN calcu-
used as inputs for the generated ANN, the statistics lated values of the retention indices are plotted
results of the latter show a large improvement. In the against the experimental values in Fig. 2. The
case of the ANN, the maximum relative error for propagation of the residuals on both sides of the zero
predicted retention indices on OV-1 and SE-54 line indicates that no systematic error exists in the
stationary phases are 6.61 and 26.45% for 3-penta- development of the ANN.
nol and 2-methyl-3-pentanone, respectively, and the
minimum values are 20.30 and 20.04% for 4-
methyl-2-pentanone and 3,5-dimethyl-3-hexanol, re- 4. Conclusion
spectively. The average percentage deviation be-
tween the predicted and the experimental values of The results of this study demonstrate that the
Kovats retention indices for the prediction set are 2.5 QSPR method using the ANN techniques can gener-
and 3.0% on OV-1 and SE-54 stationary phases, ate a suitable model for the prediction of retention

Table 5
Statistical parameters obtained using the ANN and MLR models

Column Model R R SEC (%) SEP (%) F Fp t t p

OV-1 ANN 0.977 0.971 25.54 24.47 1419 381
MLR 0.959 0.936 37.68 32.37 605 210

SE-54 ANN 0.975 0.970 25.74 25.49 1381 343
MLR 0.955 0.934 38.24 34.02 579 185

Subscript t is referring to the training set, p is referring to the prediction set, R is the correlation coefficient, F is the statistical F-value.
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